b) $*\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}<\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}$
$\iff \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}<\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$\iff \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}<\dfrac{1}{4}-\dfrac{1}{100}<\dfrac{1}{4}(1)$
$*\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}$
$\iff \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}$
$\iff \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}(2)$
Từ (1) và (2) => $\dfrac{1}{6}<\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}<\dfrac{1}{4}$