Bài 1
[tex]y=\left | 4(sin^2x+cos^2x)^2-8sin^2xcos^2x+3sin2x-2 \right |+3sin2x-5\\y=|-2sin^22x+3sin2x+2|+3sin2x-5[/tex]
Đặt $sin2x=t$ với $-1 \leq t \leq 1$
Hàm trở thành $y=|-2t^2+3t+2|+3t-5$
BBT:
$
\begin{array}{c|ccccc}
t & -1 & & -\frac{1}{2} & & 1 \\
\hline
y & -5 & & & & 1 \\
& & \searrow & & \nearrow & \\
& & & -\frac{13}{2} & &
\end{array}
$
Vậy $\min_{y}= -\frac{13}{2} , \max_{y}=1$
Bài 2
[tex]\Leftrightarrow |4(sin^6x+cos^6x)+6sin2x-5|=1-3m[/tex]
Xét hàm [tex]y=|4(sin^6x+cos^6x)+6sin2x-5|\\\Leftrightarrow y=|4(sin^4x-sin^2xcos^2x+cos^4x)+6sin2x-5|\\ \Leftrightarrow y=|4(1-3sin^2xcos^2x)+6sin2x-5|\\\Leftrightarrow y=|-3sin^22x+6sin2x-1|[/tex]
Đặt $sin2x=t$ do x thuộc [tex][0;\frac{\pi}{2}][/tex] nên $0 \leq t \leq 1$
HS: $y=|-3t^2+6t-1|$
BBT:
$
\begin{array}{c|ccccc}
t & 0 & & \frac{3-\sqrt{6}}{3} & & 1 \\
\hline
y & 1 & & & & 2 \\
& & \searrow & & \nearrow & \\
& & & 0 & &
\end{array}
$
Thỏa đề: $0 \leq 1-3m \leq 2$
Tương đương $ -\frac{1}{3} \leq m \leq \frac{1}{3} $