Tìm giá trị x,y nguyên dương sao cho : x2−y2+2x−4y−10=0(1) Giải: Ta có: (1)⇔x2−y2+2x−4y−10=0⇔(x2+2x+1)−(y2+4y+4)=7 ⇔(x+1)2−(y+2)2=7⇔(x+1−y−2)(x+1+y+2)=7⇔(x−y−1)(x+y+3)=7
Do x,y∈Z⇒x−y−1,x+y+3∈Z nên (x−y−1)(x+y+3)=7=(−1)(−7)=1.7
Ta có bảng sau: x−y−1x+y+3xy∣∣∣∣−7−1−51−1−7−5−51734713−5
Vậy (x,y)=(−5,1);(−5,−5);(3,4);(3,−5) thỏa mãn PT(1)