Toán Toán lượng giác

Thảo luận trong 'Hệ thức lượng trong tam giác' bắt đầu bởi phuongdaitt1, 17 Tháng sáu 2017.

Lượt xem: 298

  1. phuongdaitt1

    phuongdaitt1 Cựu Phó nhóm Tiếng Anh Thành viên

    Bài viết:
    1,884
    Điểm thành tích:
    471
    Nơi ở:
    Tiền Giang
    Trường học/Cơ quan:
    Trường THPT Vĩnh Bình
    Sở hữu bí kíp ĐỖ ĐẠI HỌC ít nhất 24đ - Đặt chỗ ngay!

    Đọc sách & cùng chia sẻ cảm nhận về sách số 2


    Chào bạn mới. Bạn hãy đăng nhập và hỗ trợ thành viên môn học bạn học tốt. Cộng đồng sẽ hỗ trợ bạn CHÂN THÀNH khi bạn cần trợ giúp. Đừng chỉ nghĩ cho riêng mình. Hãy cho đi để cuộc sống này ý nghĩa hơn bạn nhé. Yêu thương!

    Cho tam giác ABC vuông tại A, AB/AC = 5/6. Đường cao AH=30
    a) Tính BH,CH,BC,AB,AC
    b) E,F là hình chiếu của H lên AB, AC. Tính EF
    c) Chứng minh AE.AB=AF.AC
    giúp tớ với tớ đang cần gấp !!!!!!!!!!!
     
    Last edited: 17 Tháng sáu 2017
  2. iceghost

    iceghost Phó nhóm Toán Cu li diễn đàn TV BQT xuất sắc nhất 2016

    Bài viết:
    4,402
    Điểm thành tích:
    811
    Nơi ở:
    TP Hồ Chí Minh
    Trường học/Cơ quan:
    THPT Tân Thông Hội

    Áp dụng tính chất dãy tỉ số bằng nhau và định lý Pytago ta có $$\dfrac{AB}{AC} = \dfrac{5}{6} \\ \iff \dfrac{AB^2}{25} = \dfrac{AC^2}{36} = \dfrac{AB^2+AC^2}{25 + 36} = \dfrac{BC^2}{61}$$
    Khi đó đặt $\dfrac{AB}5 = \dfrac{AC}6 = \dfrac{BC}{\sqrt{61}} = k > 0$, suy ra $AB = 5k ; AC = 6k ; BC = \sqrt{61}k$
    Áp dụng htl ta có $$AB \cdot AC = AH \cdot BC \\ \iff 5k \cdot 6k = 30 \cdot \sqrt{61}k \iff k = \sqrt{61}$$
    Vậy $AB = 5\sqrt{61} ; AC = 6\sqrt{61} ; BC = 61$
    Tới đây bạn làm bình thường nhé :D
     
    phuongdaitt1 thích bài này.
Chú ý: Trả lời bài viết tuân thủ NỘI QUY. Xin cảm ơn!

Draft saved Draft deleted

CHIA SẺ TRANG NÀY

-->