Toán toán hình

gabay20031

Giải Ba Mùa hè Hóa học 2017
Thành viên
11 Tháng ba 2015
611
805
224
21
Quảng Trị
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1/ Cho hình vuông ABCD, trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE=CF.
a)chứng minh:tam giác EDF vuông cân
b)Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF.Chứng minh:O,C,I thẳng hàng

2/ Cho tam giác ABC vuông cân tại A.Các điểm D,E theo thứ tự di chuyển trên AB,AC sao cho BD=AE. Xác định vị trí điểm D,E sao cho:
a)DE có độ dài nhỏ nhất
b)Tứ giác BDEC có diện tích nhỏ nhất

3/ Cho đoạn thẳng AB, M là điểm nằm giữa A và B. Trên cùng nửa mặt phẳng bờ AB kẻ các hình vuông ACDM và MNPB.Gọi K là giao điểm của CP và NB.CMR:khi M di chuyển giữa A và B thì khoảng cách từ K đến AB không đổi
 
Last edited by a moderator:
  • Like
Reactions: Viet Hung 99

Viet Hung 99

Học sinh tiến bộ
Thành viên
4 Tháng sáu 2013
107
265
171
22
$\textbf{Quảng Trị}$
Quảng Trị
1/ Cho hình vuông $ABCD$, trên tia đối tia $BA$ lấy $E$, trên tia đối tia $CB$ lấy $F$ sao cho $AE=CF$.
a) Chứng minh:tam giác $EDF$ vuông cân
b) Gọi $O$ là giao điểm của $2$ đường chéo $AC$ và $BD$ . Gọi $I$là trung điểm $EF$.Chứng minh:$O,C,I$ thẳng hàng
upload_2017-4-2_19-33-18.png
a) Xét $\Delta ADE$ và $\Delta CDF$ ta có:
$AC=CD$
$AE=CF$
$\widehat{DAE}=\widehat{DCF}$
$\Longrightarrow \Delta ADE = \Delta CDF$
$\Longrightarrow DE=DF $ và $\widehat{EDF} = 90^0$
$\Longrightarrow$ $\Delta EDF$ vuông cân tại $D$
b) Ta có: $CD = BC$ $\Longrightarrow C$ thuộc đường trung trực của $BD$ $(1)$
$BI=DI= \dfrac{EF}{2}$ $\Longrightarrow I$ thuộc đường trung trực của $BD$ $(2)$
Và $O$ là trung điểm $BD$ $(3)$
Từ $(1) , (2) ,(3)$ $\Longrightarrow$ $O,C,I$ thẳng hàng
 
Top Bottom