Kẻ [tex]OK \perp CD \rightarrow SOK=45^0[/tex]
Ta có:
$AC=2a \rightarrow AB = BC = AD = CD = a\sqrt{2}$
$\rightarrow OK= \frac{a\sqrt{2}}{2} \rightarrow SO = \tan45^0.OK=\frac{a\sqrt{2}}{2}$
[tex]V=\frac{1}{3}.SO.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.(a\sqrt{2})^2=\frac{a^3\sqrt{2}}{3}[/tex]