1) Tìm x , y , z thõa mãn đồng thời
[tex]x^{2}+2y+1=0[/tex] (1)
[tex]y^{2}+2z+1=0[/tex] (2)
[tex]z^{2}+2x+1=0[/tex] (3)
Tính P= [tex]x^{2008}+y^{2009}+z^{2010}[/tex]
2) Tìm GTNN của biểu thức
M= [tex]2x^{2}+2y^{2}-2xy-2x-2y+5[/tex]
1)
$\\ x^2 + 2y + 1 = 0 \\ y^2 + 2z + 1 = 0 \\ z^2 + 2x + 1 = 0 \\ \Rightarrow x^2 + 2y + 1 + y^2 + 2z + 1 + z^2 + 2x + 1 = 0 + 0 + 0 \\ \Leftrightarrow x^2 + 2x + 1 +y^2 + 2y + 1 + z^2 + 2z + 1 = 0 \\ \Leftrightarrow (x + 1)^2 + (y + 1)^2 + (z + 1)^2 = 0 \\ Vì\; (x + 1)^2 \geq 0; (y + 1)^2 \geq 0; (z + 1)^2 \geq 0 \\ \Rightarrow \left\{\begin{matrix}
(x + 1)^2 = 0\\
(y + 1)^2 = 0\\
(z + 1)^2 = 0
\end{matrix}\right. \\ \Leftrightarrow \left\{\begin{matrix}
x + 1 = 0\\
y + 1 = 0\\
z + 1 = 0
\end{matrix}\right. \\ \Leftrightarrow \left\{\begin{matrix}
x = -1\\
y = -1\\
z = -1
\end{matrix}\right. \\ P = x^{2008} + y^{2009} + z^{2010} = (-1)^{2008} + (-1)^{2009} + (-1)^{2010} = 1 + (-1) + 1 = 1$
2)
$\\ M = 2x^2 + 2y^2 - 2xy - 2x - 2y + 5 \\ = x^2 - 2xy +y^2 + x^2 - 2x + 1 + y^2 - 2y + 1 + 3 \\ = (x - y)^2 + (x - 1)^2 + (y - 1)^2 + 3 \\ Vì \; (x - y)^2 \geq 0; (x - 1)^2 \geq 0 ; (y - 1)^2 \geq 0 \\ \Rightarrow M \geq 0 + 0 + 0 + 3 = 3 \\ Dấu\; "="\; xảy\; ra\; khi\\ \left\{\begin{matrix}
(x - y)^2 = 0\\
(x - 1)^2 = 0\\
(y - 1)^2 = 0
\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}
x - y = 0\\
x - 1 = 0\\
y - 1 = 0
\end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix}
x = y\\
x = 1\\
y = 1
\end{matrix}\right.\\ Vậy\; Min_{M} = 3\; khi\; x = y = 1$