D
dongnam0106


B ài 37 : Cho (O; R) và AB < 2R cố định. Một điểm M di chuyển trên cung lớn AB (M khác A và B). Gọi I là trung điểm của AB; (O') là đường tròn đi qua M và tiếp xúc với AB tại A. Đường thẳng MI cắt (O) và (O') lần lượt tại N và P. Chứng minh rằng:
a) 2IA = IP.IM.
b) Tứ giác ANBP là hình bình hành.
c) IB là tiếp tuyến của đường tròn ngoại tiếp ΔMBP.
d) Khi M di chuyển trên cung lớn AB thì trọng tâm G của ΔPAB chạy trên một cung tròn cố định.
a) 2IA = IP.IM.
b) Tứ giác ANBP là hình bình hành.
c) IB là tiếp tuyến của đường tròn ngoại tiếp ΔMBP.
d) Khi M di chuyển trên cung lớn AB thì trọng tâm G của ΔPAB chạy trên một cung tròn cố định.