Ta có: [tex]x^3+y^3=(x+y)(x^2-xy+y^2)\geq (x+y)(2xy-xy)=xy(x+y)\Rightarrow 8\geq x^3+y^3+6xy\geq xy(x+y)+6xy=xy(x+y+6)\geq xy(2\sqrt{xy}+6)\Rightarrow xy(\sqrt{xy}+3)\leq 4[/tex]
Đặt [tex]t=\sqrt{xy}\Rightarrow t^2(t+3)\leq 4\Rightarrow t^3+3t^2-4\leq 0\Rightarrow (t-1)(t^2+4t+4)\leq 0\Rightarrow (t-1)(t+2)^2\leq 0\Rightarrow t-1\leq 0 \Rightarrow t\leq 1[/tex]
[tex]P=\frac{1}{x}+\frac{1}{y}\geq \frac{2}{\sqrt{xy}}=\frac{2}{t}\geq \frac{2}{1}=2[/tex]
Dấu "=" xảy ra khi x = y = 1.