Cho a,b ,c >0
CM: [TEX]\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\leqslant \frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{a})[/TEX]
Áp dụng: [tex]\frac{1}{a+b}\leq \frac{1}{4}(\frac{1}{a}+\frac{1}{b})[/tex] ( Vì [tex]\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}[/tex] )
Dấu ''='' xảy ra khi: $a=b$
[tex]A=\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}=\frac{1}{(a+b)+(a+c)}+\frac{1}{(a+b)+(b+c)}+\frac{1}{(a+c)+(b+c)}\leq \frac{1}{4}(\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{a+c})\leq \frac{1}{2}.\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c})=\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})[/tex]
Dấu ''='' xảy ra khi: $a=b=c$