toán bất đẳng thức

C

congchuaanhsang

Vì c>0\Rightarrow$a+b+\dfrac{1}{c}$\leq$\dfrac{3}{2}$

Ta có:

VT=$a+b+c^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c}$

=$(8a+8b+\dfrac{1}{a^2})+(8b+8b+\dfrac{1}{b^2})+(c^2+\dfrac{8}{c}+\dfrac{8}{c})$-15$(a+b+\dfrac{1}{c})$

Áp dụng bđt Cauchy cho 3 số dương ta được

VT\geq3($\sqrt[3]{64}+\sqrt[3]{64}+\sqrt[3]{64}$)-$15(a+b+\dfrac{1}{c})$

\LeftrightarrowVT\geq3.4.3-$15(a+b+\dfrac{1}{c})$

Mà a+b+$\dfrac{1}{c}$\leq$\dfrac{3}{2}$

\RightarrowVT\geq3.4.3-$15.\dfrac{3}{2}$=$\dfrac{27}{2}$=VP

Dấu "=" xảy ra \Leftrightarrow a=b=$\dfrac{1}{2}$ ; c=2
 
Top Bottom