Cho 12a+1+12b+1+12c+1≥1CMR13a+1+13b+1+13c+1≥34
áp dụng BĐT Cauchy-Schwarz ta có:
1/(2a+1) +1/(2b+1) +1/(2c+1) >= (1+1+1)^2/(2(a+b+c)+3) >=1
=> 9 >= 2(a+b+c)+3 => 3>= a+b+c
Lại có: 1/(3a+1)+1/(3b+1)+1/(3c+1) >= (1+1+1)^2/(3(a+b+c)+3) >= 3/4
<=> 9/(3(a+b+c)+3) >= 3/4 <=> 36 >= 9(a+b+c)+9 <=> 3 >= (a+b+c) (luôn đúng theo cmt)
Dấu "=" xảy ra <=> a=b=c=1