1.
a)
P=(1−4x24x−x3−x):(1−4x24x2−x4+1) (x=2±1;x=1)
=1−4x24x−x3−x+4x3:1−4x24x2−x4+1−4x2
=1−x43x3+3x
b)
P>0⇔1−x43x3+3x>0⇔(1−x2)(1+x2)3x(x2+1)>0
$\Leftrightarrow \left\{\begin{matrix}
3x>0\\ 1-x^2>0\\ \end{matrix}\right. \ or \ \left\{\begin{matrix}3x<0\\ 1-x^2<0\\ \end{matrix}\right.$
⇔{x>0−1<x<1 or {x<0x<−1;x>1
⇔0<x<1;x<−1
2.
a)
x4−x3+2x2−x+1=0
⇔(x4−x3+x2)+(x2−x+1)=0
⇔x2(x2−x+1)+(x2−x+1)=0
⇔(x2−x+1)(x2+1)=0
...........................................
b)
x4+x3+x2+x+1=0
⇔x3(x+1)+x(x+1)+1=0
⇔(x+1)(x3+x)+1=0
⇔x(x+1)(x2+1)=0
...........................................
3.
a) ĐK:
x2+2x−8=0⇔(x−2)(x+4)=0⇔x=−4;x=2⇒D=R∖{−4;2}
b)
M=0⇔x5−2x4+2x3−4x2−3x+6=0
⇔x4(x−2)+2x2(x−2)−3(x−2)=0
⇔(x−2)(x4+2x2−3)=0
⇔(x−2)(x2−1)(x2+3)=0
⇔(x−2)(x−1)(x+1)(x2+3)=0
...............................................
c)
M=(x−2)(x+4)(x−2)(x4+2x2−3)=x+4x4+2x2−3