1.Cho P=(
)
)
a.Rút gọn P
b.Tìm x để P>0
2.Chứng minh các phương thức sau vô nghiệm
a.
b.
3.Cho M=
a.Tìm tập xác định của M
b.Tìm x để M=0
c.Rút gọn
1.
a) $P=(\dfrac{4x-x^3}{1-4x^2}-x): (\dfrac{4x^2-x^4}{1-4x^2}+1) \ \ (x\neq \dfrac{\pm 1}2;x\neq 1)$
$=\dfrac{4x-x^3-x+4x^3}{1-4x^2}:\dfrac{4x^2-x^4+1-4x^2}{1-4x^2}$
$=\dfrac{3x^3+3x}{1-x^4}$
b) $P>0\Leftrightarrow \dfrac{3x^3+3x}{1-x^4}>0\Leftrightarrow \dfrac{3x(x^2+1)}{(1-x^2)(1+x^2)}>0$
$\Leftrightarrow \left\{\begin{matrix}
3x>0\\ 1-x^2>0\\ \end{matrix}\right. \ or \ \left\{\begin{matrix}3x<0\\ 1-x^2<0\\ \end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}x>0\\ -1<x<1\end{matrix}\right. \ or \ \left\{\begin{matrix}x<0\\ x<-1;x>1\end{matrix}\right.$
$\Leftrightarrow 0<x<1;x<-1$
2.
a) $x^4-x^3+2x^2-x+1=0$
$\Leftrightarrow (x^4-x^3+x^2)+(x^2-x+1)=0$
$\Leftrightarrow x^2(x^2-x+1)+(x^2-x+1)=0$
$\Leftrightarrow (x^2-x+1)(x^2+1)=0$
...........................................
b) $x^4+x^3+x^2+x+1=0$
$\Leftrightarrow x^3(x+1)+x(x+1)+1=0$
$\Leftrightarrow (x+1)(x^3+x)+1=0$
$\Leftrightarrow x(x+1)(x^2+1)=0$
...........................................
3.
a) ĐK: $x^2+2x-8\neq 0\Leftrightarrow (x-2)(x+4)\neq 0\Leftrightarrow x\neq -4;x\neq 2\Rightarrow D=R\setminus \left \{ -4;2 \right \}$
b) $M=0\Leftrightarrow x^5-2x^4+2x^3-4x^2-3x+6=0$
$\Leftrightarrow x^4(x-2)+2x^2(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x^4+2x^2-3)=0$
$\Leftrightarrow (x-2)(x^2-1)(x^2+3)=0$
$\Leftrightarrow (x-2)(x-1)(x+1)(x^2+3)=0$
...............................................
c) $M=\dfrac{(x-2)(x^4+2x^2-3)}{(x-2)(x+4)}=\dfrac{x^4+2x^2-3}{x+4}$