$A=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}=\dfrac{3\sqrt{x}}{3(x+\sqrt{x}+1)}=\dfrac{(x+\sqrt{x}+1)-(x-2\sqrt{x}+1)}{3(x+\sqrt{x}+1)}=\dfrac{1}{3}-\dfrac{(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\leq \dfrac13$
Dấu '=' xảy ra khi $x=1$
Vậy...
$A=\dfrac{\s0qrt{x}}{x+\sqrt{x}+1}=\dfrac{3\sqrt{x}}{3(x+\sqrt{x}+1)}=\dfrac{(x+\sqrt{x}+1)-(x-2\sqrt{x}+1)}{3(x+\sqrt{x}+1)}=\dfrac{1}{3}-\dfrac{(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\leq \dfrac13$
Dấu '=' xảy ra khi $x=1$
Vậy...