6. vẫn rút đc nhưng mà kết quả ko đc đẹp lắm vs lại P chưa chắc >0, mk nghĩ đề phải là 2x−1 ^^
a) ĐK: x≥0;x=1
$P=\dfrac{x+2+\sqrt{x}(\sqrt{x}-1)-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{x-2\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{(\sqrt{x}-1)^2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{2}{x+\sqrt x+1}$
b) x+x+1>0⇒x+x+12>0 hay P>0
c) P=32⇔x+x+12=32 ⇒x+x+1=3 ⇔x+x−2=0 ⇔(x+2)(x−1)=0 ⇔x−1=0 ⇔x=1 (KTM)
Vậy...
7.
a) ĐK: x≥0;x=1
$Q=\dfrac{3(\sqrt{x}+1)+\sqrt{x}-3}{(\sqrt{x}-1)(\sqrt{x}+1)}:\dfrac{x+2-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}+2)(\sqrt{x}-1)}
\\=\dfrac{3\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-1)(\sqrt{x}+1)}.\dfrac{(\sqrt{x}+2)(\sqrt{x}-1)}{x+2-x+\sqrt{x}}
\\=\dfrac{4\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+2}{\sqrt{x}+2}=\dfrac{4\sqrt{x}}{\sqrt{x}+1}$
b) Q=x−1⇔x+14x=x−1 ⇒(x+1)(x−1)=4x ⇔x−1−4x=0 ⇔x−4x+4−5=0 ⇔(x−2)2=5 ⇔x−2=±5 ⇔x=2+5 (vì x≥0 nên...) ⇔x=9+45 (TM)
Vậy...