Giúp mình 2 bài này với ạ!
6. vẫn rút đc nhưng mà kết quả ko đc đẹp lắm vs lại $P$ chưa chắc $>0$, mk nghĩ đề phải là $\dfrac{\sqrt x-1}2$ ^^
a) ĐK: $x\geq 0;x\neq 1$
$P=\dfrac{x+2+\sqrt{x}(\sqrt{x}-1)-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{x-2\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{(\sqrt{x}-1)^2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\dfrac{2}{\sqrt{x}-1}
\\=\dfrac{2}{x+\sqrt x+1}$
b) $x+\sqrt x+1>0\Rightarrow \dfrac 2{x+\sqrt x+1}>0$ hay $P>0$
c) $P=\dfrac 23\Leftrightarrow \dfrac 2{x+\sqrt x+1}=\dfrac 23$
$\Rightarrow x+\sqrt x+1=3$
$\Leftrightarrow x+\sqrt x-2=0$
$\Leftrightarrow (\sqrt x+2)(\sqrt x-1)=0$
$\Leftrightarrow \sqrt x-1=0$
$\Leftrightarrow x=1$ (KTM)
Vậy...
7.
a) ĐK: $x\geq 0;x\neq 1$
$Q=\dfrac{3(\sqrt{x}+1)+\sqrt{x}-3}{(\sqrt{x}-1)(\sqrt{x}+1)}:\dfrac{x+2-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}+2)(\sqrt{x}-1)}
\\=\dfrac{3\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-1)(\sqrt{x}+1)}.\dfrac{(\sqrt{x}+2)(\sqrt{x}-1)}{x+2-x+\sqrt{x}}
\\=\dfrac{4\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+2}{\sqrt{x}+2}=\dfrac{4\sqrt{x}}{\sqrt{x}+1}$
b) $Q=\sqrt{x}-1\Leftrightarrow \dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt x-1$
$\Rightarrow (\sqrt{x}+1)(\sqrt{x}-1)=4\sqrt{x}$
$\Leftrightarrow x-1-4\sqrt{x}=0$
$\Leftrightarrow x-4\sqrt{x}+4-5=0$
$\Leftrightarrow (\sqrt{x}-2)^2=5$
$\Leftrightarrow \sqrt{x}-2=\pm \sqrt{5}$
$\Leftrightarrow \sqrt x=2+\sqrt{5}$ (vì $\sqrt x\geq 0$ nên...)
$\Leftrightarrow x=9+4\sqrt 5$ (TM)
Vậy...