

Từ điểm A ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC ( với B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Gọi E là hình chiếu của điểm C trên đường kính BD của đường tròn (O).
a) Chứng minh ·goc HEB = goc·HAB.
b) AD cắt CE tại K. Chứng minh K là trung điểm của CE.
c) Tính theo R diện tích hình giới hạn bởi hai tiếp tuyến AB, AC và cung nhỏ BC của đường tròn(O) trong trường hợp OA = 2R
a) Chứng minh ·goc HEB = goc·HAB.
b) AD cắt CE tại K. Chứng minh K là trung điểm của CE.
c) Tính theo R diện tích hình giới hạn bởi hai tiếp tuyến AB, AC và cung nhỏ BC của đường tròn(O) trong trường hợp OA = 2R