Ta có:
$A=.......= \frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}} . (x^{2}-\sqrt{x}) = \frac{x^{2}.\sqrt{x}-x+x^{2}-\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}} = \frac{x.(x\sqrt{x} + x + \sqrt{x}) - (x\sqrt{x}+x+\sqrt{x})}{x\sqrt{x}+x+\sqrt{x}} = x-1$
b) Ta có
$T= x^{4} - 5x^{2} - 8x +2025 - 2.(x-1)^{2} = x^{4} - 7x^{2} - 4x +2023 = (x^{4} - 8x^{2} + 16) + (x^{2} - 4x + 4) + 2003 = (x^{2}-4)^{2} + (x-2)^{2} + 2003 >= 2003$
=> $MINT = 2003$ vơi x=2