[Toán 9][Thi vào lớp 10] Một vài bài toán hình căn bản (mong giúp giùm)

O

omaikoll

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1. Cho mình hỏi, trong một tam giác có 3 góc nhọn, nếu mình chứng minh được trực tâm của tam giác đó trùng với tâm của đường tròn ngoại tiếp tam giác đó thì có thể suy ra thẳng ra tam giác đó là tam giác đều được ko? Cái này có cơ sở j ko? Mình làm thế có bị mất điểm ko? Có cần bổ sung thêm j ko?
2. Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R). Các đường cao AD và CE cắt nhau tại H. Cho AB = 13, AC = 20 và BC = 21. Hãy tính R.
Gợi ý: Đặt DC = x ; Ta có:
AD^2 = AC^2 - x^2
AD^2 = AB^2 - (BC - x)^2
=> AC^2 - x^2 = AB^2 - (BC - x)^2
Thế vào => x = 16. Rồi tính diện tích tam giác ABC.
CHỨNG MINH HỆ THỨC: Diện tích tam giác ABC = (AB.AC.BC)/4R
=> R = ?
Đây là phần gợi ý của thầy mình trên lớp. Mình bị kẹt lại ở phần chứng minh Diện tích tam giác ABC = (AB.AC.BC)/4R ấy. Các bạn làm giúp mình nhé. thanks
 
H

hoangson2598

Dễ thôi trong tam giác ABC nếu mà tâm đường tròn ngoại tiếp trùng với trực tâm thì ta gọi D là trung điểm của BC .Suy ra OD vuông góc với BC .Mà O là trực tâm suy ra AO vuông góc BC suy ra 3 diem A,O,I thang hang.Mà IO là đường trung trực của BC suy ra A thuộc đường trung trực của BC suy ra AB=AC.Tương tự ta cũng có BC=BA suy ra tam giác ABC đều
 
Top Bottom