[toán 9] Rút gọn biểu thức

T

tiendungst_1999

E

eye_smile

Rút gọn đc y=xxy=x-\sqrt{x}

y=2y=2 \Leftrightarrow xx=2x-\sqrt{x}=2
\Leftrightarrow (x+1)(x2)=0(\sqrt{x}+1)(\sqrt{x}-2)=0
\Leftrightarrow x=4x=4 (đối chiếu đk)

b, x>1x>1 \Rightarrow x>1\sqrt{x}>1
\Leftrightarrow x>xx>\sqrt{x}
\Leftrightarrow y=xx>0y=x-\sqrt{x}>0
\Rightarrow y=yy=|y|
\Rightarrow ....

c,y=xx=(x12)21414y=x-\sqrt{x}={(\sqrt{x}-\dfrac{1}{2})^2}-\dfrac{-1}{4} \ge \dfrac{-1}{4}

Dấu "=" xảy ra \Leftrightarrow ....
 
N

nhuquynhdat

a) y=x2+xxx+1+12x+xxy=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1} + 1 - \dfrac{2x+\sqrt{x}}{\sqrt{x}} ĐKXĐ : {x0x0 \left\{\begin{matrix} x \ge 0\\x \ne 0 \end{matrix}\right.

=x(x3+1)xx+1+1x(2x+1)x=\dfrac{ \sqrt{x}( \sqrt{x^3}+1)}{x-\sqrt{x}+1} +1-\dfrac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}

=x(x+1)+12x1=xx=\sqrt{x}(\sqrt{x}+1)+1-2\sqrt{x}-1=x-\sqrt{x}

Để y=2xx=2xx2=0(x+1)(x2)=0x2=0x=4y=2 \leftrightarrow x-\sqrt{x}=2 \leftrightarrow x-\sqrt{x}-2=0 \leftrightarrow (\sqrt{x}+1)(\sqrt{x}-2)=0 \leftrightarrow \sqrt{x}-2=0 \leftrightarrow x=4
 
Top Bottom