[Toán 9] Giải phương trình

K

koumancu

Last edited by a moderator:
L

lp_qt

3. $\sqrt{x+9}= \sqrt{x}+\dfrac{2\sqrt{2}}{\sqrt{x+1}}$

$\sqrt{x+9}= \sqrt{x}+\dfrac{2\sqrt{2}}{\sqrt{x+1}} \Longleftrightarrow \sqrt{(x+9)(x+1)}=\sqrt{x(x+1)}+2\sqrt{2}$

$\Longleftrightarrow x^2+10x+9=x^2+x+8+4\sqrt{2(x^2+x)} \Longleftrightarrow 4\sqrt{2(x^2+x)}=9x+1$

đến đây bình phương tiếp (đk $x \ge \dfrac{-1}{9}$)

5.$\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0$

$\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0 \Longleftrightarrow \sqrt{3x+1}-4-\sqrt{6-x}+1+3x^2-14x-5=0$

$\Longleftrightarrow \dfrac{3x+1-16}{\sqrt{3x+1}+4}-\dfrac{6-x-1}{\sqrt{6-x}-1}+(x-5)(3x+1)=0$

$\Longleftrightarrow (x-5)\left [\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}-1}+(3x+1) \right ]=0 \Longleftrightarrow x=5$
 
Last edited by a moderator:
P

phamvananh9

[TEX][/TEX]
Câu 1:
<=> $(4x^2 - 4x.\sqrt[]{x+3} + x+3) + (2x-1 - 2\sqrt[]{2x-1}+1)$ = 0

<=>$( 2x - \sqrt[]{x+3})^2 + ( \sqrt[]{2x-1} +1)^2$ = 0

Đến đây suy ra từng bình phương bằng 0 rùi giải tiếp là ra.
 
Top Bottom