K
kulham_love


giải hpt
$a) \left\{\begin{matrix} x^2 -2x + y^2 =0 \\ x^2 -2xy +1 =0 \end{matrix}\right.$
b) $\left\{\begin{matrix} (x-y) (x^2 +y^2) = 5 \\ (x+y) (x^2- y^2 = 9 \end{matrix}\right.$
c) $\left\{\begin{matrix} x^2 + y^2 =1\\ x^2 -x = y^2 -y \end{matrix}\right.$
d) $\left\{\begin{matrix} x^2 -2x + y^2 =0\\ x^2 -2xy +1 =0\end{matrix}\right.$
e) $\left\{\begin{matrix} \sqrt{x + 10} + \sqrt{y - 6} = 4\\ \sqrt{x - 6} + \sqrt{y + 10} = 4\end{matrix}\right.$
f)$ \left\{\begin{matrix} \dfrac{1}{x + y} + \dfrac{1}{x - y} =3 \\ \dfrac{2}{x + y} - \dfrac{3}{x - y} = 1\end{matrix}\right.$
g)$ \left\{\begin{matrix} x^2 + y^2 +x + y =18 \\ x(x+1) . y(y+1) =72 \end{matrix}\right.$
$a) \left\{\begin{matrix} x^2 -2x + y^2 =0 \\ x^2 -2xy +1 =0 \end{matrix}\right.$
b) $\left\{\begin{matrix} (x-y) (x^2 +y^2) = 5 \\ (x+y) (x^2- y^2 = 9 \end{matrix}\right.$
c) $\left\{\begin{matrix} x^2 + y^2 =1\\ x^2 -x = y^2 -y \end{matrix}\right.$
d) $\left\{\begin{matrix} x^2 -2x + y^2 =0\\ x^2 -2xy +1 =0\end{matrix}\right.$
e) $\left\{\begin{matrix} \sqrt{x + 10} + \sqrt{y - 6} = 4\\ \sqrt{x - 6} + \sqrt{y + 10} = 4\end{matrix}\right.$
f)$ \left\{\begin{matrix} \dfrac{1}{x + y} + \dfrac{1}{x - y} =3 \\ \dfrac{2}{x + y} - \dfrac{3}{x - y} = 1\end{matrix}\right.$
g)$ \left\{\begin{matrix} x^2 + y^2 +x + y =18 \\ x(x+1) . y(y+1) =72 \end{matrix}\right.$
Last edited by a moderator: