[Toán 9] BĐT

C

cuong276

a/(1+b^2) = (a+ab^2 - ab^2)/(1+b^2) = a - ab^2/(1+b^2)
Theo cosi ta có:
1+b^2 >=2b →ab^2/(1+b^2) <=ab^2/2b = ab/2
=> a - ab^2/(1+b^2) >= a - ab/2 hay a/(1+b^2) >= a - ab/2
tương tự: b/(1+c²)>=b-bc/2; c/(1+a²)>=c-ac/2.
=> a/(1+b²)+b/(1+c²)+c/(1+a²)>=a+b+c-1/2(ab+bc+ca)
mà: 3(ab+bc+ca)<=(a+b+c)²=9=> ab+bc+ca<=3
=>-1/2(ab+bc+ca)>=-3/2
=> a+b+c-1/2(ab+bc+ca)>=3-3/2=3/2
=> a/(1+b²)+b/(1+c²)+c/(1+a²)>= 3/2(dpcm)
dấu "=" xảy ra <=> a=b=c=1
 
V

vitconcatinh_foreverloveyou

[TEX]\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}[/TEX]

[TEX]= a+b+c - \bigg( \frac{ab^2}{1 + b^2} + \frac{bc^2}{1 + c^2} + \frac{ca^2}{1 + a^2} \bigg)[/TEX]

[TEX]\geq 3 - \bigg( \frac{ab^2}{2b} + \frac{bc^2}{2c} + \frac{ca^2}{2a} \bigg) \geq \frac{3}{2}[/TEX]

[TEX]\big( ( a+b+c)^2 \geq 3(ab + bc+ ca) \Rightarrow ab + bc +ca \leq 3 \big)[/TEX]
 
V

vip_boy_hp_9x

[TEX]\frac{a}{1+b^2}= \frac{a+ab^2 - ab^2}{1+b^2}) = \frac{a- ab^2}{1+b^2}[/TEX]
Theo cosi ta có:
[TEX]1+b^2 \geq 2b \Rightarrow\frac{ab^2}{1+b^2} \leq \frac{ab^2}{2b} = \frac{ab}{2}[/TEX]
[TEX]\Rightarrow \frac{a- ab^2}{1+b^2} \geq \frac{a- ab}{2}[/TEX] hay [TEX]\frac{a}{1+b^2} \geq \frac{a- ab}{2}[/TEX]
tương tự: [TEX]\frac{b}{1+c^2}\geq \frac{b-bc}{2}; \frac{c}{1+a^2}\geq \frac{c-ac}{2}[/TEX]
[TEX]\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}[/TEX]
[TEX]= a+b+c - \bigg( \frac{ab^2}{1 + b^2} + \frac{bc^2}{1 + c^2} + \frac{ca^2}{1 + a^2} \bigg)[/TEX]
[TEX]\geq 3 - \bigg( \frac{ab^2}{2b} + \frac{bc^2}{2c} + \frac{ca^2}{2a} \bigg) \geq \frac{3}{2}[/TEX]
[TEX]\big( ( a+b+c)^2 \geq 3(ab + bc+ ca) \Rightarrow ab + bc +ca \leq 3 \big)[/TEX]
 
Last edited by a moderator:
Top Bottom