2) $\dfrac{2-x}{2011}-1=\dfrac{1-x}{2012}-\dfrac{x}{2013}$
\Rightarrow $1+\dfrac{2-x}{2011}-2=\dfrac{1-x}{2012}+1+1-\dfrac{x}{2013}-2$
\Rightarrow $\dfrac{2013-x}{2011}-2=\dfrac{2013-x}{2012}-\dfrac{2013-x}{2013}-2$
\Rightarrow $\dfrac{2013-x}{2011}-\dfrac{2013-x}{2012}-\dfrac{2013-x}{2013}=0$
\Rightarrow $(2013-x)(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013})=0$
\Rightarrow $(2013-x)=0$ \Rightarrow $x=2013$