tìm nghiệm của phương trình [tex]x^{6} +3x^{2}+1=y^{_{4}}[/tex]
ta c
ó bạn xem đề bài là 3x^3 chứ
khi đó cách giải là
→Xét x ≥ 1 thì:
x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)²
và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)²
=> (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)²
=> y⁴ nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nghiệm với x ≥ 1
→Xét x = 0: tính được y = ± 1 => pt có 2 nº (0; -1) và (0;1)
→Xét x = -1: y⁴ = -1 (vô nº)
→Xét x ≤ -2: để dễ nhìn đặt z = -x => z ≥ 2
pt trở thành: y⁴ = z⁶ - 3z³ + 1
Ta thấy: z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2)
=> z⁶ - 3z³ + 1 < (z³ - 1)²
và (z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8)
=> z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)²
Do đó: (z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)²
=> y⁴ nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nº với x ≤ -2
Kết luận pt đã cho có 2 nº là (0; -1) và (0;1)