[Toán 8]Tính gt phân thức

H

hiendang241

trả lời đây

1/x(x+1)(x+2) +1/(x+1)(x+2)(x+3)+...........+1/(x+8)(x+9)(x+10)
=1/x(x+1) -1(x+1)(x+2) +1/(x+1)(x+2) -1/(x+2)(x+3)+...........+1/(x+8)(x+9) -1/(x+9)(x+10)
=1/x(x+1)-1/(x+9)(x+10)=x^2+19x+90-x^2-x/x(x+1)(x+9)(x+10)
=18x+90/x(x+1)(x+9)(x+10)

kq chỉ dc z thui

Chú ý gõ latex, nhắc nhở lần 1
 
Last edited by a moderator:
V

vipboycodon

$A = \dfrac{1}{x(x+1)(x+2)}+\dfrac{1}{(x+1)(x+2)(x+3)}+...+\dfrac{1}{(x+8)(x+9)(x+10)}$
$2A = \dfrac{2}{x(x+1)(x+2)}+\dfrac{2}{(x+1)(x+2)(x+3)}+...+\dfrac{2}{(x+8)(x+9)(x+10)}$
$2A = \dfrac{1}{x(x+1)}-\dfrac{1}{(x+1)(x+2)}+\dfrac{1}{(x+1)(x+2)}-\dfrac{1}{(x+2)(x+3)}+...+\dfrac{1}{(x+8)(x+9)}-\dfrac{1}{(x+9)(x+10)}$
$2A = \dfrac{1}{x(x+1)}-\dfrac{1}{(x+9)(x+10)} = \dfrac{18x+90}{x(x+1)(x+9)(x+10)}$
=> $A = \dfrac{9x+45}{x(x+1)(x+9)(x+10)}$
 
H

huynhbachkhoa23

$\frac{1}{x(x+1)(x+2)}+\frac{1}{(x+1)(x+2)(x+3)}+...+\frac{1}{(x+8)(x+9)(x+10)}$
$=\frac{1}{2}(\frac{2}{x(x+1)(x+2)}+\frac{2}{(x+1)(x+2)(x+3)}+...+\frac{2}{(x+8)(x+9)(x+10)})$
$=\frac{1}{2}(\frac{1}{x(x+1)}-\frac{1}{(x+1)(x+2)}+\frac{1}{(x+1)(x+2)}-\frac{1}{(x+2)(x+3)}+...-\frac{1}{(x+9)(x+10)})$
$=\frac{9(x+5)}{x(x+1)(x+9)(x+10)}$
 
Top Bottom