[Toán 8]Tìm Min?

0

0973573959thuy

b) $B = \dfrac{x^2 - 7x + 9}{x^2 - 2x + 1}$

Đặt $x - 1 = y \rightarrow x = y + 1$

$\rightarrow B = \dfrac{(y + 1)^2 - 7(y + 1) + 9}{y^2} = \dfrac{y^2 - 5y + 3}{y^2} = 1 - \dfrac{5}{y} + \dfrac{3}{y^2}$

Lại đặt z = $\dfrac{1}{y}$ thì :

$B = 1 - 5z + 3z^2 = 3(z^2 - \dfrac{5}{3}z + \dfrac{1}{3}) = 3(z^2 - 2.z.\dfrac{5}{6} + \dfrac{25}{36} - \dfrac{25}{36} + \dfrac{1}{3} = 3(z - \dfrac{5}{6})^2 - 1\dfrac{1}{12}$ \geq $-1\dfrac{1}{12}$

Vậy $Min_B = -1\dfrac{1}{12} \leftrightarrow z = \dfrac{5}{6} \leftrightarrow y = 1,2 \leftrightarrow x = 2,2$
 
C

congchuaanhsang

A=$\dfrac{x^2+2x}{2x^2+1}$

\Leftrightarrow$(1-2A)x^2+2x-A=0$

Để phương trình trên có nghiệm thì $\Delta$\geq0

hay $-8a^2+4a+4$\geq0

\Leftrightarrow$\dfrac{-1}{2}$\leqA\leq$1$

$A_{min}$=$\dfrac{-1}{2}$\Leftrightarrow$x=\dfrac{-1}{2}$
 
Last edited by a moderator:
Top Bottom