$\dfrac{a^3b - ab^3 + b^3c - bc^3 + c^3a - ca^3}{a^2b - ab^2 +b^2c - bc^2 + c^2a - ca^2}$
$= \dfrac{a^3(b - c) + bc(b^2 - c^2) - a(b^3 - c^3)}{a^2(b - c) + bc(b - c) - a(b^2 - c^2)}$
$= \dfrac{a^3(b - c) + bc(b + c)(b - c) - a(b - c)(b^2 + bc + c^2)}{(b - c)a^2 + bc(b - c) - a(b - c)(b + c)}$
$= \dfrac{(b - c)(a^3 + b^2c + bc^2 - ab^2 - abc - ac^2)}{(b - c)(a^2 + bc - ab - ac)}$
$= \dfrac{(b - c)(c - a)(b - a)(a + b + c)}{(b - c)(a - b)(a - c)} = a + b + c$
Chú ý : $a^3 + b^2c + bc^2 - ab^2 - abc - ac^2 = bc(b + c) - ab(b + c) - a(c^2 - a^2)$
$= (bc - ab)(b + c) - a(c - a)(c + a)$
$= b(c - a)(b + c) - a(c - a)(c + a)$
$= (c - a)(b^2 + bc - ac - a^2)$
$= (c - a)[(b - a)(b + a) + c(b - a)]$
$= (c - a)(b - a)(a + b + c)$