Toán 8 - Phân tích thành nhân tử

B

baochauhn1999

Câu 4:
$x^8+x^4+1=x^8+2x^4+1-x^4=(x^4+1)^2-x^4=(x^4+1-x^2)(x^4+1+x^2)=.........$
Bạn tự phân tích tiếp theo phương pháp trên nha
 
T

thaolovely1412

Câu 3) [TEX]x^{10} + x^5 + 1 [/TEX]
[TEX]= x^{10} + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1 [/TEX]
[TEX]= (x^{10} + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1) [/TEX]
[TEX]= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1) [/TEX]
[TEX]= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) [/TEX]
 
Q

quynhsieunhan

1, $-(c + d)(a + b) - (c - d)(b - a)$
= $-ca - cb - ad - bd - cb + ca + bd - da$
= $-2cb - 2ad$
= $-2(ad + bc)$
 
Q

quynhsieunhan

2, cùng lắm thì dùng tam giác pascal
$(x + y)^7 - x^7 - y^7$
= $(x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7) - x^7 - y^7$
= $7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6$
= $7xy(x^5 + 3x^4y + 5x^3y^2 + 5x^2y^3 + 3xy^4 + y^5)$
= $7xy[(x^5 + y^5) + 3xy(c^3 + y^3) + 5x^2y^2(x + y)]$
= $7xy(x + y)(x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + y^4)$
= $7xy(x + y)[(x^2 + y^2)^2 + 2xy(x^2 + y^2) + x^2y^2]$
= $7xy(x + y)(x^2 + xy + y^2)^2$
 
Top Bottom