Ta có:
$M=\dfrac{x^2+x+1}{x^2-2x+1}$
$=\dfrac{x^2+x+1}{(x-1)^2}$
Đặt $x-1=y$ \Rightarrow $x=y+1$
\Rightarrow $M=\dfrac{(y+1)^2+y+1+1}{y^2}$
$=\dfrac{y^2+2y+1+y+1+1}{y^2}$
$=\dfrac{y^2+3y+3}{y^2}$
$=\dfrac{y^2}{y^2}+\dfrac{3y}{y^2}+\dfrac{3}{y^2}$
$=1+\dfrac{3}{y}+\dfrac{3}{y^2}$
Đặt $\dfrac{1}{y}=z$
\Rightarrow $M=1+3z+3z^2= 3(z^2+z+\dfrac{1}{4})+\dfrac{1}{4}$
$=3(z+\dfrac{1}{2})^2 +\dfrac{1}{4}$ \geq $\dfrac{1}{4}$
\Rightarrow min $M=\dfrac{1}{4}$ \Leftrightarrow $z=\dfrac{-1}{2}$
\Leftrightarrow $y=-2$\Leftrightarrow $x=-1$
Vậy M đạt giá trị lớn nhất là $\dfrac{1}{4}$ khi $x=-1$