b) [tex]\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\Leftrightarrow \frac{1}{1+a}=(1-\frac{1}{1+b})+(1-\frac{1}{1+c})=\frac{b}{1+b}+\frac{c}{1+c}\geq 2.\sqrt{\frac{b}{1+b}.\frac{c}{1+c}}[/tex]
Tương tự...
[tex]\Rightarrow \frac{1}{(1+a)(1+b)(1+c)}\geq 8.\frac{\sqrt{ab.bc.ca}}{\sqrt{...}}[/tex]
[tex]\Rightarrow \frac{1}{(1+a)(1+b)(1+c)}\geq \frac{8abc}{(1+a)(1+b)(1+c)}[/tex]
[tex]\Rightarrow 1\geq 8abc[/tex]
[tex]\Rightarrow abc\leq \frac{1}{8}[/tex]
[tex]\Rightarrow Max(abc)=\frac{1}{8}[/tex] đạt được tại [tex]a=b=c=\frac{1}{2}[/tex]