P
p.i.e_66336


Chứng minh rằng $ \forall \ a,b \in \ \mathbb{R}$ luôn có :
$\dfrac{a + b}{2}. \dfrac{a^2 + b^2}{2} . \dfrac{a^3 + b^3}{2} \leq \dfrac{a^6 + b^6}{2}$
$\dfrac{a + b}{2}. \dfrac{a^2 + b^2}{2} . \dfrac{a^3 + b^3}{2} \leq \dfrac{a^6 + b^6}{2}$
Last edited by a moderator: