[Toán 8] BĐT

N

nguyenquynang98

[TEX]1=a+b 2\geq \sqrt{ab}[/TEX]
[TEX]\Rightarrow ab \leq \frac{1}{4}[/TEX]
[TEX]bpt \geq \frac{1}{2ab}+\frac{4}{(a+b)^2} = 4 + \frac{1}{2ab}[/TEX]
[TEX]\geq 4 + 2 = 6 [/TEX] (đpcm)
 
Last edited by a moderator:
H

hoamattroi_3520725127

Bài 1 :
Cho a, b \geq 0 sao cho a + b = 1
CMR: a) $\dfrac{1}{ab} + \dfrac{1}{a^2 + b^2}$ \geq 6
Mình ko rõ đề bạn có nhầm k nhưng mà mình nghĩ a,b > 0 :D

Ta có :

$(a + b)^2 \ge 4ab$

$\leftrightarrow 4ab \le 1 \leftrightarrow ab \le \dfrac{1}{4} \leftrightarrow \dfrac{1}{ab} \ge 4$

Áp dụng bđt : $\dfrac{1}{x} + \dfrac{1}{y} \ge \dfrac{4}{x + y} (x,y > 0)$ ta có :

$A = \dfrac{1}{ab} + \dfrac{1}{a^2 + b^2} = \dfrac{2}{2ab} + \dfrac{1}{a^2 + b^2} = \dfrac{1}{2ab} + [\dfrac{1}{2ab} + \dfrac{1}{a^2 + b^2}] \ge \dfrac{1}{2}.4 + \dfrac{4}{(a + b)^2} = 2 + 4 = 6$

Dấu bằng xảy ra $\leftrightarrow a = b = \dfrac{1}{2}.$

Cách khác : $A = \dfrac{1}{ab} + \dfrac{1}{a^2 + b^2} = \dfrac{(a + b)^2}{ab} + \dfrac{(a + b)^2}{a^2 + b^2}$

$ = \dfrac{2(a^2 + b^2 + 2ab)}{2ab} + \dfrac{a^2 + b^2 + 2ab}{a^2 + b^2} = \dfrac{2(a^2 + b^2)}{2ab} + 2 + \dfrac{2ab}{a^2 + b^2} + 1$

$ = 3 + \dfrac{a^2 + b^2}{2ab} + (\dfrac{a^2 + b^2}{2ab} + \dfrac{2ab}{a^2 + b^2}$

Ta có : $a^2 + b^2 \ge 2ab \leftrightarrow \dfrac{a^2 + b^2}{2ab} \ge 1$

$\dfrac{x}{y} + \dfrac{y}{x} \ge 2 (x,y > 0)$

$\rightarrow A \ge 1 + 3 + 2 = 6.$

Đẳng thức xảy ra khi a = b = 0,5.

Good Luck! :)
 
C

congchuaanhsang

Theo Cauchy: $\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}$\geq$\dfrac{4}{(a+b)^2}=4$

$ab$\leq$\dfrac{(a+b)^2}{4}$=$\dfrac{1}{4}$ \Leftrightarrow $2ab$\leq$\dfrac{1}{2}$

VT=$\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}$

\geq4+2=6
 
Top Bottom