M
minh1910


1/CHo a,b,c>0 thoả mãn abc=1
c/m $\dfrac{1}{a^2+2b^2+3}$+$\dfrac{1}{b^2+2c^2+3}$+
+$\dfrac{1}{c^2+2a^2+3}$ < $\dfrac{1}{2}$
2/ CHo abc=1 và $a^3>36$
c/m $\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca$
c/m $\dfrac{1}{a^2+2b^2+3}$+$\dfrac{1}{b^2+2c^2+3}$+
+$\dfrac{1}{c^2+2a^2+3}$ < $\dfrac{1}{2}$
2/ CHo abc=1 và $a^3>36$
c/m $\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca$
Last edited by a moderator: