Cho $x=\frac{a+b+c}{2}$,chứng minh rằng:
$(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c)=ab+bc+ca-x^2$
P/s: Cần gấp giải nhanh xác nhận ngay !
$a+b+c=2x$
Ta có:4[$(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c)]=4(ab+bc+ca-x^2)$
\Rightarrow $(2x-2a)(2x-2b)+(2x-2b)(2x-2c)+(2x-2a)(2x-2c)=4(ab+bc+ca-x^2)$
\Rightarrow $(b+c-a)(a+c-b)+(a+c-b)(a+b-c)+(b+c-a)(a+b-c)=4(ab+bc+ca-x^2)$
\Rightarrow $c^2-(a-b)^2+a^2-(b-c)^2+b^2-(c-a)^2=4ab+4bc+4ca-4x^2$
\Rightarrow $c^2-(a-b)^2+a^2-(b-c)^2+b^2-(c-a)^2=(a+b+c)^2-a^2-b^2-c^2-4x^2+2ab+2bc+2ca$
\Rightarrow $c^2-(a-b)^2+a^2-(b-c)^2+b^2-(c-a)^2+a^2+b^2+c^2=(a+b+c)^2-4x^2+2ab+2bc+2ca$
\Rightarrow $2(a^2+b^2+c^2) -(a-b)^2-(b-c)^2-(c-a)^2=4x^2-4x^2=2ab+2bc+2ca$
\Rightarrow $2ab+2bc+2ca$=$2ab+2bc+2ca$(đúng)