[TEX]A=\frac{1}{x} + \frac{1}{y}[/TEX]
Áp dụng BĐT [TEX]\frac{1}{x} + \frac{1}{y} \geq \frac{4}{x+y}[/TEX]
[TEX]\Leftrightarrow A \geq 4[/TEX]
Vậy min A = 4 khi x=y
[TEX]C=(x + \frac{1}{x})^2 + (y + \frac{1}{y})^2[/TEX]
[TEX]= x^2 + \frac{1}{x^2} +y^2 + \frac{1}{y^2} +4 (1)[/TEX]
Ta có [TEX]x^2 + y^2 \geq 2xy \Rightarrow 2(x^2+y^2) \geq (x+y)^2[/TEX]
[TEX]\Rightarrow x^2 + y^2 \geq \frac{1}{2} (2)[/TEX]
Cô-si: [TEX]x+y \geq 2\sqrt{xy} [/TEX]
[TEX]\Rightarrow 1 \geq 4xy[/TEX]
[TEX]\Rightarrow \frac{1}{xy} \geq 4 \Rightarrow \frac{2}{xy} \geq 8[/TEX]
Ta có [TEX]\frac{1}{x^2} + \frac{1}{y^2} \geq \frac{2}{xy}[/TEX]
[TEX]\Rightarrow \frac{1}{x^2} + \frac{1}{y^2} \geq 8 (3)[/TEX]
[TEX](1),(2),(3) \Rightarrow C \geq \frac{25}{2}[/TEX]
Vậy min C = 12,5 khi x=y=0,5
[TEX]B=\frac{a^2}{x} + \frac{b^2}{y}[/TEX]
Áp dụng Cô-si: [TEX]x+y \geq 2\sqrt{xy} [/TEX]
[TEX]\Rightarrow 1 \geq 4xy[/TEX]
[TEX]\Rightarrow \frac{1}{xy} \geq 4[/TEX]
Áp dụng BĐT Cô-si : [TEX]\frac{a^2}{x} + \frac{b^2}{y} \geq 2\sqrt{\frac{a^2b^2}{xy}}[/TEX]
[TEX]\Rightarrow B \geq 2\sqrt{\frac{a^2b^2}{4}}[/TEX]
[TEX]\Rightarrow B \geq ab[/TEX]
Vậy min B = ab khi x=y