$S= (\frac{-1}{7})^0 +(\frac{-1}{7})^1 +(\frac{-1}{7})^2+...+(\frac{-1}{7})^{2007}$
$S= 1 + (\frac{-1}{7})(1+(\frac{-1}{7})^1 +(\frac{-1}{7})^2+...+(\frac{-1}{7})^{2006})$
$S= 1 + (\frac{-1}{7}).(S - (\frac{-1}{7})^{2007})$
$S= 1 + \frac{-S}{7} - (\frac{-1}{7})^{2008}$
$S + \frac{S}{7} = 1 - (\frac{-1}{7})^{2008}$
$ \frac{8}{7}. S = 1 - (\frac{-1}{7})^{2008}$
$S = \frac{1 - (\frac{-1}{7})^{2008}}{ \frac{8}{7}}$