[Toán 7]Tìm nghiệm

T

thangvegeta1604

1) f(x)=0\Rightarrow 52+2x+1=05^2+2x+1=0\Rightarrow 2x+26=02x+26=0\Rightarrow x=13x=-13
2) Ta có: h(x)=x2+x+1=x2+x2+x2+14+34h(x)=x^2+x+1=x^2+\dfrac{x}{2}+\dfrac{x}{2}+\dfrac{1}{4}+\dfrac{3}{4}
\Rightarrow h(x)=x(x+12)+12(x+12)+34h(x)=x(x+\dfrac{1}{2})+\dfrac{1}{2}(x+\dfrac{1}{2})+\dfrac{3}{4}
\Rightarrow h(x)=(x+12)2+34h(x)=(x+\dfrac{1}{2})^2+\dfrac{3}{4}
(x+12)2(x+\dfrac{1}{2})^2\geq 0.\Rightarrow h(x)\geq 34\dfrac{3}{4}
Vậy GTNN của h(x) là 34\dfrac{3}{4} khi (x+12)2=0(x+\dfrac{1}{2})^2=0\Leftrightarrow x=12x=-\frac{1}{2}.
Bài 1 sai, bài 2 đúng nhé bạn!
duc_2605
 
Last edited by a moderator:
K

khaiproqn81

1 Sai kìa bạn

f(x)=5x2+2x+1=0f(x)=5x^2+2x+1=0

Ta có: 5x2+2x+1=5x2+2x+15+45=(5x+55)2+4545>05x^2+2x+1=5x^2+2x+\dfrac{1}{5}+\dfrac{4}{5}=( \sqrt{5} x+\dfrac{\sqrt{5}}{5})^2+\dfrac{4}{5} \geq \dfrac{4}{5}>0

Nên f(x)f(x) vô nghiệm
 
Top Bottom