$1.b)\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\=\dfrac{9}{10}\left ( \dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{1999.2009} \right )\\=\dfrac{9}{10}\left ( \dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{1999}-\dfrac{1}{2009} \right )\\=\dfrac{9}{10}\left ( \dfrac{1}{9}-\dfrac{1}{2009} \right )=\dfrac{200}{2009}$
$2.\\b)\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\=\left ( \dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015} \right )+\left ( \dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016} \right )\\=\dfrac{1}{2}\left ( \dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015} \right )+\dfrac{1}{2}\left ( \dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2014.2016} \right )\\=\dfrac{1}{2}\left ( 1-\dfrac{1}{2015} \right )+\dfrac{1}{2}\left ( 1-\dfrac{1}{2016} \right )\\=1-\left ( \dfrac{1}{4030}+\dfrac{1}{4032} \right )$
Mà $\dfrac{1}{4030}+\dfrac{1}{4032}< \dfrac{1}{2}+\dfrac{1}{2}=\dfrac{1}{4}\Rightarrow 1-\left ( \dfrac{1}{4030}+\dfrac{1}{4032} \right )> 1-\dfrac{1}{4}=\dfrac{3}{4}$
=> Đề sai ^^