[Toán 7] Chứng minh 29+2991002^9+2^{99} \vdots 100

0

0973573959thuy

Bài giải :

Ta có : A = [TEX]2^9 + 2^{99} = 2^9 + (2^{11})^9 = (2 + 2^{11})(2^8 - 2^7. 2^{11} + 2^6 . 2^{22} - ... 2 . 2^{77} + 2^{88}) = 2050 . 2A = 4100 . A \vdots 100 [/TEX]

Chúc bạn học tốt ! :)
 
Last edited by a moderator:
H

hthtb22

*>Ta có:
A=29+299=22(27+297)=4(27+297)0A= 2^9 +2^{99}=2^2(2^7 + 2^{97})=4(2^7 + 2^{97}) \equiv 0 (mod 4).

*> 25=322^5 = 32 \equiv 7 (mod 25)
\Rightarrow 210722^{10} \equiv 7^2 (mod 25)
\Rightarrow 21012^{10} \equiv -1 (mod 25)


Mặt khác:
A=29+299=29(1+290) 2^9 +2^{99} =2^9(1+2^{90})
(1+290)=1+(210)91+(1)0(1+2^{90}) = 1 + (2^{10})^9 \equiv 1 +(-1) \equiv 0 (mod 25)
\Rightarrow 29+29902^9 +2^{99} \equiv 0 (mod 25)
(4;25)=1
\Rightarrow A0A \equiv 0 (mod 100)
\Rightarrow A chia hết cho 100.
 
Last edited by a moderator:
Top Bottom