A
anh_nguyen0215


Cho tam giác ABC CM:
\huge 3.1<CosA+CosB+CosC \leq \frac 32
xét A= CosA+CosB+CosC - \frac 32 = CosA+CosB+CosC -1- \frac 12
\Rightarrow A= 2 cos( \frac{A+B}{2})cos(\frac{A-B}{2}) -2 sin^2\frac{C}{2}-\frac12
\Leftrightarrow A=-2[ sin(\frac{C}{2}) -\frac 12cos(\frac{A-B}{2})^2+ \frac 14 sin^2(\frac{A+B}{2}) \leq 0
\Rightarrow đpcm
\huge 3.1<CosA+CosB+CosC \leq \frac 32
xét A= CosA+CosB+CosC - \frac 32 = CosA+CosB+CosC -1- \frac 12
\Rightarrow A= 2 cos( \frac{A+B}{2})cos(\frac{A-B}{2}) -2 sin^2\frac{C}{2}-\frac12
\Leftrightarrow A=-2[ sin(\frac{C}{2}) -\frac 12cos(\frac{A-B}{2})^2+ \frac 14 sin^2(\frac{A+B}{2}) \leq 0
\Rightarrow đpcm