[TEX]I=\int\frac{sinx}{1+sin2x}dx[/TEX]
Chú ý cách phân tích để ứng dụng vào những bài tương tự :
[TEX]1+sin2x=(sinx+cosx)^2=2cos^2(x-\frac{\pi}{4})[/TEX]
[TEX] sinx=sin(x-\frac{\pi}{4}+\frac{\pi}{4})=\frac{1}{\sqrt2}[sin(x-\frac{\pi}{4})+cos(x-\frac{\pi}{4})][/TEX]
[TEX]I=\frac{1}{2sqrt2}\int[\frac{sin(x-\frac{\pi}{4})}{cos^2(x-\frac{\pi}{4})}+\frac{cos(x-\frac{\pi}{4})}{cos^2(x-\frac{\pi}{4})}]dx=\frac{1}{2sqrt2}[\int\frac{-d(cos(x-\frac{\pi}{4}))}{cos^2(x-\frac{\pi}{4})}+\int\frac{d(sin(x-\frac{\pi}{4}))}{1-sin^2(x-\frac{\pi}{4})}]=\frac{1}{2sqrt2}[\frac{1}{cos(x-\frac{\pi}{4})}+\frac{1}{2}ln(\frac{1+sin(x-\frac{\pi}{4})}{1-sin(x-\frac{\pi}{4})})]+C[/TEX]