G
greenstar131


1, giải phương trình:
a, (cos2x - cos 4x )[TEX]^2[/TEX] = 6 + 2sin 3x
b, ([TEX]\sqrt{1- cosx}[/TEX] +[TEX]\sqrt{cosx}[/TEX]). cos2x = [TEX]\frac{1}{2}[/TEX] sin4x
c, [TEX]sin3x - sinx + sin2x [/TEX] =0
d, cos2x + 3cosx +2 = 0
e, 3( cotx - cosx ) - 5( tanx - sinx )= 2
f, 1 + sin[TEX]^3[/TEX]2x + cos[TEX]^3[/TEX]2x = [TEX]\frac{3}{2}[/TEX]sin4x
a, (cos2x - cos 4x )[TEX]^2[/TEX] = 6 + 2sin 3x
b, ([TEX]\sqrt{1- cosx}[/TEX] +[TEX]\sqrt{cosx}[/TEX]). cos2x = [TEX]\frac{1}{2}[/TEX] sin4x
c, [TEX]sin3x - sinx + sin2x [/TEX] =0
d, cos2x + 3cosx +2 = 0
e, 3( cotx - cosx ) - 5( tanx - sinx )= 2
f, 1 + sin[TEX]^3[/TEX]2x + cos[TEX]^3[/TEX]2x = [TEX]\frac{3}{2}[/TEX]sin4x