Moi nguoi giup minh bai nay voi nhe, minh can gap.
Tinh tong sau:
[tex]S=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+ \frac{2n-1}{2^n}[/tex]
[tex]S=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+ \frac{2n-1}{2^n}[/tex]
\Leftrightarrow[TEX]\frac{1}{2}S=\frac{1}{2^2}+\frac{3}{2^3}+\frac{5}{2^4}+...+ \frac{2n-1}{2^{n+1}}[/TEX]
\Rightarrow[TEX]S-\frac{1}{2}S= \frac{1}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^n}-\frac{2n-1}{2^{n+1}}[/TEX]
\Leftrightarrow[TEX]S-\frac{1}{2}S= \frac{1}{2}-\frac{2n-1}{2^{n+1}}+ (\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}})[/TEX]
Đặt [TEX]S_1=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}[/TEX]
Dãy số: [TEX]\frac{1}{2}[/TEX] , [TEX]\frac{1}{2^2} [/TEX], ... , [TEX]\frac{1}{2^{n-1}}[/TEX] lập thành một cấp số nhân có n-1 số hạng, với [TEX]u_1=\frac{1}{2} , q=\frac{1}{2}[/TEX]
\Rightarrow[TEX]S_1 = \frac{u_1.(1-q^{n-1})}{1-q} = \frac{2^{n-1} -1 }{2^{n-1}}[/TEX]\Rightarrow[TEX]S-\frac{1}{2}S= \frac{1}{2} - \frac{2n-1}{2^{n+1}} + \frac{2^{n-1}-1}{2^{n-1}}[/TEX]
\Rightarrow [TEX]S= 1- \frac{2n-1}{2^n}+\frac{2^{n-1}}{2^{n-2}}[/TEX]