[Toán 11] C/m cosx+cotxsinx+tanx>0xkπ2,kZ\dfrac{\cos x+\cot x}{\sin x+\tan x}>0\forall x\neq k\dfrac{\pi}{2},k\in \mathbb{Z}

X

xuanquynh97

Chứng minh bất đẳng thức:
cosx+cotxsinx+tanx\frac{cosx+cotx}{sinx+tanx}>0∀x≠kπ2,k∈Z
Ta có cosx+cotxsinx+tanx\frac{cosx+cotx}{sinx+tanx}=cosx(sinx+1)sinxsinx(1+cosx)cosx\frac{\frac{cosx(sinx+1)}{sinx}}{\frac{sinx(1+cosx)}{cosx}}=cos2xsin2x.1+sinx1+cosx\frac{cos^2x}{sin^2x}.\frac{1+sinx}{1+cosx}=cot2x.(1+sinx)(1+cosx)cot^2x.\frac{(1+sinx)}{(1+cosx)}
∀x≠kπ2 thì cot2xcot^2x\geq0 ; sinx \geq -1 ; cosx \geq -1
\Rightarrow cot2x.1+sinx1+cosxcot^2x.\frac{1+sinx}{1+cosx}>0
\Rightarrow cosx+cotxsinx+tanx\frac{cosx+cotx}{sinx+tanx}>0
 
Last edited by a moderator:
Top Bottom