[Toán 11] C/m $\dfrac{\cos x+\cot x}{\sin x+\tan x}>0\forall x\neq k\dfrac{\pi}{2},k\in \mathbb{Z}$

X

xuanquynh97

Chứng minh bất đẳng thức:
$\frac{cosx+cotx}{sinx+tanx}$>0∀x≠kπ2,k∈Z
Ta có $\frac{cosx+cotx}{sinx+tanx}$=$\frac{\frac{cosx(sinx+1)}{sinx}}{\frac{sinx(1+cosx)}{cosx}}$=$\frac{cos^2x}{sin^2x}.\frac{1+sinx}{1+cosx}$=$cot^2x.\frac{(1+sinx)}{(1+cosx)}$
∀x≠kπ2 thì $cot^2x$\geq0 ; sinx \geq -1 ; cosx \geq -1
\Rightarrow $cot^2x.\frac{1+sinx}{1+cosx}$>0
\Rightarrow $\frac{cosx+cotx}{sinx+tanx}$>0
 
Last edited by a moderator:
Top Bottom