- 1 Tháng ba 2017
- 3,368
- 2,140
- 524
- Hà Nam
- THPT Trần Hưng Đạo -Nam Định
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Câu 1: (6.0đ) 1) Giải phương trình: $x=2-(2-x^{2})^{2}$
2) Giải hệ phương trình: $\left\{\begin{matrix} x^2+xy-y=3x\\3x^2-2y^2+y=3x \end{matrix}\right.$
Câu 2: (3.5đ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: $f(x)=\frac{\sqrt{2x-x^2}+2}{1+\sqrt{2x-x^2}}$ trên đoạn $[\frac{1}{4};\frac{3}{2}]$.
Câu 3: (4.0đ)
1) Ba góc $\alpha,\beta,\gamma\in(0;\frac{\pi}{2})$ thỏa mãn: $cos(\alpha-\beta)=1,sin(\beta+2\gamma)=0$. Chứng minh rằng: $cos\alpha+cos\beta+cos\gamma \le \frac{3}{2}$.
2) Biết $\frac{1006}{2013}<\frac{a}{b}<\frac{1007}{2015};a,b \in \mathbb{Z}^+$. Chứng minh: $a \ge 2013$.
Câu 4: (3.5đ)
Cho lăng trụ đứng ABC.A'B'C' có thể tích bằng 1. Tam giác ABC vuông cân tại A và có diện tích bằng nửa diện tích của tam giác AA'C. Điểm M di động trên AB và điểm N di động trên A'C' sao cho $AM=C'N>0$. Gọi I là trung điểm của đoạn MN. Chứng minh rằng: I luôn luôn nằm trên một mặt phẳng cố định. Tìm giá trị nhỏ nhất trong các khoảng cách từ I đến đường thẳng AA' khi MN thay đổi.
Câu 5: (3.0đ)
Cho tập hợp A có n phần tử ($n>1$) và đánh dấu n phần tử đó là $a_1,a_2,...,a_k,...,a_n$. Sắp xếp n phần tử của A thành dãy hàng ngang theo thứ tự từ trái sang phải, gọi dãy như vậy là dãy (*). Gán cho phần tử $a_k$ ($k=1,2,...,n$) trong dãy (*) một giá trị $G_k$ theo qui tắc sau:
+ Nếu $a_k$ đứng ở vị trí đầu tiên trong dãy (*) thì $G_k=1$;
+ Gỉa sử $a_k$ đứng từ vị trí thứ hai trở đi và phần tử $a_i$ đứng bên trái $a_k$ thì $G_k=k$ nếu $k>i$ và $G_k=1$ nếu $k<i$.
Đặt $S=G_1+G_2+...+G_n$. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của S đạt được khi các dãy (*) thay đổi.
Tìm số phần tử của tập A trong mỗi trường hợp sau:
1) Biết $M-m=15$.
2) Cả hai giá trị M và m đều là số nguyên tố.
mong làm hộ
@Nghĩa bá đạo
@phuongthao1910@gmail.com
@Cao Khánh Tân
@Trường Xuân
@Xuân Long
2) Giải hệ phương trình: $\left\{\begin{matrix} x^2+xy-y=3x\\3x^2-2y^2+y=3x \end{matrix}\right.$
Câu 2: (3.5đ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: $f(x)=\frac{\sqrt{2x-x^2}+2}{1+\sqrt{2x-x^2}}$ trên đoạn $[\frac{1}{4};\frac{3}{2}]$.
Câu 3: (4.0đ)
1) Ba góc $\alpha,\beta,\gamma\in(0;\frac{\pi}{2})$ thỏa mãn: $cos(\alpha-\beta)=1,sin(\beta+2\gamma)=0$. Chứng minh rằng: $cos\alpha+cos\beta+cos\gamma \le \frac{3}{2}$.
2) Biết $\frac{1006}{2013}<\frac{a}{b}<\frac{1007}{2015};a,b \in \mathbb{Z}^+$. Chứng minh: $a \ge 2013$.
Câu 4: (3.5đ)
Cho lăng trụ đứng ABC.A'B'C' có thể tích bằng 1. Tam giác ABC vuông cân tại A và có diện tích bằng nửa diện tích của tam giác AA'C. Điểm M di động trên AB và điểm N di động trên A'C' sao cho $AM=C'N>0$. Gọi I là trung điểm của đoạn MN. Chứng minh rằng: I luôn luôn nằm trên một mặt phẳng cố định. Tìm giá trị nhỏ nhất trong các khoảng cách từ I đến đường thẳng AA' khi MN thay đổi.
Câu 5: (3.0đ)
Cho tập hợp A có n phần tử ($n>1$) và đánh dấu n phần tử đó là $a_1,a_2,...,a_k,...,a_n$. Sắp xếp n phần tử của A thành dãy hàng ngang theo thứ tự từ trái sang phải, gọi dãy như vậy là dãy (*). Gán cho phần tử $a_k$ ($k=1,2,...,n$) trong dãy (*) một giá trị $G_k$ theo qui tắc sau:
+ Nếu $a_k$ đứng ở vị trí đầu tiên trong dãy (*) thì $G_k=1$;
+ Gỉa sử $a_k$ đứng từ vị trí thứ hai trở đi và phần tử $a_i$ đứng bên trái $a_k$ thì $G_k=k$ nếu $k>i$ và $G_k=1$ nếu $k<i$.
Đặt $S=G_1+G_2+...+G_n$. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của S đạt được khi các dãy (*) thay đổi.
Tìm số phần tử của tập A trong mỗi trường hợp sau:
1) Biết $M-m=15$.
2) Cả hai giá trị M và m đều là số nguyên tố.
mong làm hộ
@Nghĩa bá đạo
@phuongthao1910@gmail.com
@Cao Khánh Tân
@Trường Xuân
@Xuân Long