Gọi H là chân đường cao hạ từ I xuống BC.
Ta có: [tex]IG \perp IC \Leftrightarrow \overrightarrow{IG}.\overrightarrow{IC}=0\Leftrightarrow \frac{1}{3}(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}).\overrightarrow{IC}=0\Leftrightarrow (\frac{-b}{a}\overrightarrow{IB}-\frac{c}{a}\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IC})\overrightarrow{IC}=0\Leftrightarrow [(1-\frac{b}{a})\overrightarrow{IB}+(1-\frac{c}{a})\overrightarrow{IC}]\overrightarrow{IC}=0\Leftrightarrow (1-\frac{c}{a})IC^2+(1-\frac{b}{a})(\overrightarrow{IH}+\overrightarrow{HC})(\overrightarrow{IH}+\overrightarrow{HB})=0\Leftrightarrow (1-\frac{c}{a})IC^2+(1-\frac{b}{a})(IH^2+BH.HC)[/tex]
Rồi sau đó thay [tex]IC^2=IH^2+HC^2,BH=\frac{a+c-b}{2},CH=\frac{a+b-c}{2}[/tex] là được.