1, sin 2x - cos 2x - 2 sin 2x - 2 cos 2x - 2 sin x + 2 cos x + 1 = 0
<=> - sin 2x - 3 cos 2x + 1 - 2 ( sin x - cos x) = 0
<=>$ - 2 sin x cos x - 3 ( cos^2 x - sin^2 x) + sin^2 x + cos^2 x - 2 (sin x - cos x) = 0$
<=> $4 sin^2 x - 2 sin x cos x - 2 cos^2 x - 2 ( sin x - cos x) = 0$
<=> 2 (sin x - cos x)(2 sin x +cos x) - 2 ( sin x - cos x) = 0
<=> 2 ( sin x - cos x)(2 sin x + cos x - 1) = 0
..........................
2, cos 2x + cos x - cos 4x = sin 3x + sin 2x
<=> sin 3x + cos 4x - cos 2x + sin 2x - cos x = 0
<=> sin 3x - 2 sin 3x sin x + 2 sin x cos x - cos x = 0
<=> sin 3x (1 - 2 sin x) - cos x (1 - 2 sin x) = 0
<=> (1 - 2 sin x)(sin 3x - cos x) = 0
........................